A 37 F I ’

B C
D 20 70 E
H 20 50 L \— 2070

(b)

pROGRAM EXECUTION AND OUTPUT

To execute the program. substitute the page number of your system’s R/W memory in
lace of XX, enter the program and the data, and execute it. To verily the proper exect-
tion, check the memory locations from XX70H to XX7FH.

Let us assume the system R/W user memory starts at 2000H. Figure 7.9(a) shows
how the contents of the memory location 2050H are copied into the accumulator by the
instruction MOV A M: the HL register points to location 2050 and instruction MOV AM
copies 37H into A. Figure 7.9(b) shows that the DE register points to the location 2070H

and the instruction STAX D copies (A) into the location 2070H.
See Questions and Assignments 5-21 at the end of this chapter.

\/ ARITHMETIC OPERATIONS RELATED TO MEMORY

In the last chapter, the arithmetic instructions concerning three arithmetic tasks—Add.
Subtract, and Increment/Decrement—WeIe introduced. These instructions dealt w:ih

Scanned with CamScanner

BUDO

3
erning the
microproc . : inst
arilhmeticctzsir_ register contents or numbers. In this chapte® i
Sks related to memory will be inlroduccd: w/ffom the
ADD cation
M/SUB m: Add/Subtract the contents of & memory lo 4tion
f the acc It Joc
INR o accumulator. , ,mory
M/DCR M: Increment/Decrement the conlents of am 4
\ ; . 4 copy 2
.__-1.31 Instructions e one S }
The aritt ic i orm WO @ erform the anth-
- ?111 imetic instructions referenced to Memory perfo B other 15 t-, s5ume (hat one
Y€ Irom a memory location to the microprocessor, . alicitly 70 op are re-
meuc ; dD mp umuldl()f
€UC Operation. These instructions (other than INR an 50 ec the exceD-
of the operands is (A); after an operation, the previous . ata conditionS (
Qlaced by the result. All flags are modified 0 reflect the
uons: INR and DCR).
Opcode Operand
ADD M Add Memory .
‘o s >] tio ;
= Th1S'ﬁ'l;mﬂg_mS,tmdC tores the result in A -
O Readds (M) to (A) and ® ified by the contents of
O The meimory location 18 specth€
register
SUB M Subtract Memory .
O This me .
ult in A
0O It subtracts (M) from (A) and. stores the result “
O The memorymmﬁed by 9_{/1:_)’_"
INR M This iig._lf-_tmginsmxcxion._ﬁ | .
O It increments the contents of a memory \oiggg_i}jg |
not-the memmory address
O The memory location is specified by (HL)
O All flags except the Carry flag are affected
DCR M This is a 1-byte instruction i
O It decrements (M)-by. 1
O-The memory location is specified by (HL)
O All flags except the Carry flag are affecied
nple Write instructions 1o add the C(‘)Illf:llls of the l’i’l(:ml)ry location 2040H to (A). and subtr
the contents of the memory location 2041H from the first sum. Assume the “uw .
—— has 30H, the memory location 2040H has 68H, ¢ it v Rhapecd e -l
S Y 8H, and the Jocation 2041H has 7¥H
. Before asking the microprocessor 1o perform any me
A ' v mem‘- - ¥ . s
or ory-related operations, we mu

specify the memory focation by loading the HL register pair. In th
figure 7.10, the contents of the HL pair 2040H specify ”ﬁlc. m ; G‘Mmmu ok The
specify memory o

cruction ADD M adds 68H, the contents of m oty
the] emory location 204 l
p LA J ot {)‘1 "(h’

the contents O

Scanned with CamScanner

. Wiy 15 r'a Y ——

PROGRAMMING TECHNGuE
S WITH ADDITIONAL INSTRUCTIONS 229
ALU Operation
— K——
+30 ADD M
98H
98 Machine
Code Mnemonics
AL y) 68 | 2040 21
B C 40
D E 12041 20 LXI H,2040H
. 20 20 : 86 ADD M
(a)
ALU Operation
=
—7F
19 SUB M
19
A 98 F 68 |2040 -
23
B - (E: / TF__|2041 96 SUB M
D
H 20 41 L
(b)
FIGURE 7.10 . 6
Register and Memory Contents and Instructions for Example 7.
th 30H). The instruction INX H points (o the next memory location,
z&laficumzlz:;or .(g[ruc'[iOn SUB M subtracts the contents (7FH) of memory location
, and the in: ¥
2041H from the previous sum.
: —_— Exampie
Writ i i 1.1
\/ e instructions to .

) increme » contents of the memory loca-
: and increment the con
L. load 59H i location 2040H, a
4 in memory lo
2 ;10[; location 704 1H, and decrement the contents of the m
- load 90H in memory locatioh =

. cation,

emory lo-

Scanned with CamScanner

£.32 1
llustrative Program: Addition with Carry

;3 ROBLEM starenvenT

bIx bytes of data are stored in memory locations starting at XX50H. Adc 28 the. dat
Ytes. Use register B to save any carries generated, while adding the data bytes. Disply,

the entire sum at two output ports, or store the sum at two consecutive memory locations
XX70H and XX71H.

Data(H) A2, FA, DE ES5, 98, 8B

PROBLEM ANALYSIS
This problem can be analyzed in relation to the general flowchart in Figure 7.3 as follov

1. Because of the memory-related arithmetic instructions just introduced in this secti:
two blocks in the general flowchart—data acquisition and data processing—can -
combined in one instruction.

Scanned with CamScanner

PROGRAM
Memory
Address Machine Instructi
HI_LO C d ructions
oce Label Opcode Operand Comments
XX00 AF XRA
01 47 A ;Clear (A) to save sum
02 OE Mov B,A ;Clear (B) to save carry
03 06 MVI C,06H ;Set up register C as a counter
04 .
05 ?é LXI H,XX50H ;Set up HL as memory pointer
06 XX
(()); 18)?2 NXTBYT: ;\DD M ;Add byte from memory
09 NC NXTMEM ;if no carry, do not increment
0A g(()j(; carry register
0B 04 INR B, ;If carry, save carry bit
0C 23 NXTMEM: INX H ;Point to next memory location
0D 0D : DCR C ;One addition is completed;
; decrement counter
OE C2 INZ NXTBYT ;If all bytes are not yet added,
OF 07 ;g0 back to get next byte
10 XX
;Output Display
11 D3 OuT _ PORT1 ;Display low-order byte of the
12 PORT]1 ; sum at PORT1
13 78 MOV AB ;Transfer carry to accumulator
14 D3 ouT PORT2 ;Display carry digits
15 PORT?2)
16 76 HLT ;End of program
;Storing in Memory—Alternative to Output Display
11 21 LXI H,XX70H ;Point to the memory
12 70 ; location to store answer
13 XX
14 77 MOV M,A - ;Store low-order byte at XX70H
15 73 INX H ;Point to location XX71H
16 70 MOV M,B ;Store carry bits
17 76 HLT ;End of program

Scanned with CamScanner

o wRsupruoa,

| LN
>

= LOGIC OPERATIONS: ROTATE

74

n the last chapter, the logic instructions concerning the four tions AND, OR
operations » OR, Ex-

OR, and NOT were intr()(luced. This chupter i d e
. E 1ntr i i ati
o - Titor Bits: s ar s foll . oduces instructions related to rotating the

0 RLC: Rotate Accumulator Left

0 RAL: Rotate Accumulator Left Through Carry
O RRC: Rotate Accumulator Right

O RAR: Rotate Accumulator Right Through Carry
7.41 Instructions

This group has four instructions; two are for rotating left and two are for rotating right.
The differences between these instructions are illustrated in the following examples.

1. RLC: Rotate Accumulator Left
O EafRbit is shifted to the adjacent left position. Bit D; becomes Do.
O CY flag is modified according to bit D;.

Assume the accumulator contents are AAH and CY = 0. Ilustrate the accumulator con-
tents after the execution of the RLC instruction twice.

Figure 7.13 shows the contents. of the accumulator and the CY flag after the execution of
tl}e RLC instruction twice. The first RLC instruction shifts each bit to the left by one po-
sition, places bit D, in bit D, and sets the CY flag because D; = 1. The accumulator byte
AAH becomes 55H after the first rotation. In the second rotation, the byte is again AAH,
and the CY flag is reset because bit D of 55H is 0. :

Scanned with CamScanner

2 Before the A =
instruction. - ! 0 1 0 1 0 1 0 = aan
L VA VA VA VAR VAR W/
0
After the first
RLC, (A) willbe A = 0 1 0 1 0 1 0 ! =
55H with CY set. 354
CYy
After the second @
RLC, (A) will be
AAH again with A= 1 0 1 0 | 0 I 0 @
CY reset. ' Ahn
FIGURE 7.13
Accumulator Contents after RLC
2. RAL: Rotate Accumulator Left Through Carry
O Each bit is shifted to the adjacent left position. Bit D; becomes the carry bit and the
carry bit is shifted into Dy,.
O The Carry flag is modified according to bit D-. =
Example Assume the accumulator contents are AAH and CY = 0. Illustrate the accumulator con-
7.9 tents after the execution of the instruction RAL twice.
Solution Figure 7.14 shows the contents of the accumulator and the CY flag after the execution of

the RAL instruction twice. The first RAL instruction shifts each bit to the left by one posi-
tion, places bit D, in the CY flag, and the CY bit in bit Dy: This is a 9-bit rotation: CY is as-
sumed to be the ninth bit of the accumulator. The accumulator byte AAH becomes 34H af-
ter the first rotation. In the second rotation, the byte becomes A9H, and the CY flag is resct

Examining these two examples, you may notice that the primary ditference between these
two instructions 1s that (1) the instruction RLC rotates through eight bits, and (2) the -
struction RAL rotates through nine bits.

3. RRC: Rotate Accumulator Right
O Each bit is shift'ed right to the adjacent position. Bit D, becomes D-.
O The Carry flag is modified according to bit Dy,

4. RAR: Rotate Accumulator Right Through Carry

O Each bit ls.sl?lfteq right to the adjacent position. Bit D, becomes the carry bit, and
the carry bit is shifted into Ds. .

Scanned with CamScanner

. pROGRAMMING TECHNIQUES Wity ap,
: DITIONAL INSTRUCTIONS

235
CYy
{0
D, D
6 DS D D
(A) before the instruction. 1 0 - o D D
. Pl oj o] 1| o fPcDaan
(A VAL VAL VAR WaAR v,
CY
After the instruction RAL, ; m
(A) will be 54H 3
with the CY set. Lol v ol 1| of o] =sm
CY
One more RAL instruction @
will change (A) to 1
A9st and reset the CY. Ot vl o}l 1 jolo]| 1 | =Dam
FIGURE 7.14
Accumulator Contents after RAL
Assume the contents of the accumulator are 81H and CY = 0. Illustrate the accumulator Example
contents after the RRC and RAR instructions. 7.10
Solution

Figure 7.15 shows the changes in the contents of the accumulator (81H) when the RRC
instruction is used and when the RAR instruction is used. The 8-bit rotation of the RRC
instruction changes 81H into COH, and the 9-bit rotation of the RAR instruction changes

81H into 40H.

APPLICATIONS OF ROTATE INSTRUCTIONS .
The rotate instructions are primarily used in arithmetic

for serial duta transfer.
For example, if (A) is 0000 1000 = 08H,

multiply and divide operations and

0000 0100 = 04H

by 2

| 0000 = [OH

2 (I(”l = I(’](])

=

O By rotating 08H right: (A) =
This is equivalent to dividing
O By rotating 08H left: (A) = 000
This is equivalent to multiplying by

1 re rotated left f or vice
‘Ho e invalid when logic 118 rotated left ‘lmlf\ D, “3 Dn. | d.:.l
? chgr. these Pm"Cdur;;;‘Tc stated Teft. it pecomes O1H. Applications of senal Gt
Versa, For example, if 80H 15 T :

- transfer are discussed in Chapter 16.

Scanned with CamScanner

(A) will be rotated
with the RRC instruction
as shown,

After the execution of
the instruction RRC, (A)

will be COy with the
CY flag set.

(A) will be rotated with
the RAR instruction as shown.

After the execution of the RAR
instruction, (A) will be 40H with

the CY flag set.

FIGURE 7.15
Rotate Right Instructions

PROGRAMMING 4y 8085

CY
0
D, D Dy D, D; D, D, D,
1 0 0 0 0 0 0 1 =) 8y
A A A \Y‘ A A \S
1
1 1 0 0 0 0 0 0 = Co,
CY

:i) 40H

Scanned with CamScanner

Lz

68

© o
PROG
DESc i
RIPTION AND OUTPUT bytes. Register B is used (g

whether D7 is 1 or O.If the

In th;
IS pro .
Program, register C is used as a counter to count ten
ts the number and goes 1

Save the « t te
Carry ﬂeazu-m' The sign of the number is checked by verlfymg
Block s bGls Set to indicate the negative sign, the program rejec
T}; Ctting Ready for Next Operation. S i B

€ Program should reject the data bytes D8, C2, F2. and 75, g

res .
€st. The answer displayed should be ES5. .
See Questions and Assignments 32—40 at the end of this chapter.

LOGIC OPERATIONS: COMPARE

The 8085 instruction set has two types of Compare operations: CMP and CPL

O CMP: Compare with Accumulator

O CPI: Compare Immediate (with Accumulator)
3

The microprocessor compares a data byte (or register/memory contents) with (i
contents of the accumulator by subtracting the data byte from (A), and indicatc

Scanned with CamScanner

Gl .

,:PRoGRAMMING TECHNIQUES WITH ADDITIONAL INSTRUCTIONS

.+ the data byte is 2\s (A) b iaors
whethet the y modifying the - .
i dified. flags. However, the contents are not
7.51 Instructions
. Compare (Register or Me)

1. CMP &M P gister or Memory) with Acc

O This is a 1-bytc instruction, th Accumulator

d T compares the data byte in register or memory with the contents of the accumu-

lator.
O If (A)< (RM), the CY flag lj_jﬂ and the Zero flag is reset. M - (4

O li‘ (A) = (R/M the Z.c;b_ﬁ;@ is set and the QY,_HHZ’ is reset. ' M0 4
0 IFA) > (RIM). the CY and Zero flags are reset. e bl

g :}’ en n:cntlory is ﬂnﬁ)&iﬁ{d, its address is specified by (HL).
o contents are modified;_ho ini s (S. P. are
O i e sl of e saton, Bags (5.1 AC) FERER ==
[2. CPI 8-bit: Compare Immediate with Accumulator
| O This is a 2-byte instruction, the second byte being 8-bit data.
‘ Ont cAomparqs,lhc_sccgnd‘bytc,_wi_ln_(A).
) O If (A) < 8-bit data, the CY flag is set and the Zero flag is reset.
O lf—(#)rzﬁ:irdmﬁfth?zab“ﬂEg‘i's‘@ﬁ’the CY flag is reset.

O S 8-bit data, the CY and Zero flags set.
0 Wd; however, all remaining flags (S, P, AC) are affected ac-

cording to the result of the subtraction.

. Q-AO

‘ Write an instruction to load the accumulator with the data byte 64H, and verify whether Example
the data byte in memory location 2050H is equal to the accumulator contents. If both data 7.11
| bytes are equal, jump to Jocation OUTL.

Solution

-Figure 7.17 illustrates Example 7.11.

ALU Operation

(A)
- (M) <:
Set Flags

} LXI H, 20501
A 64 F
B - C 4450 MVI A, 64H
D — |k / i CMP M

I JZ OUTI
H 20 50 L
FIGURE 7.17

Compare Instructions

PR

Scanned with CamScénh‘ér |

N\ /

‘r
P VAR 'd
_~ DYNAMIC DEBUGGING Y . &)

s

Afte}' you have COITlpleted the steps in the process of static debugging (described in the
previous chapter), if the program still does not produce the expected output, you cap at-
empt to debug the program by observing the execution of instructions. This is called 4¥~

pamic debugging.
161 Tools for Dynamic Debugging | \éz/

In a single-board microcomputer, techniques and tools commonly used D dynamic G=7

bugging are

O Single Step
O Register Examine
O Breakpoint

Each will be discussed below; thé Single-Step and Register Examine keys were discussed

briefly in the previous chapter.

SINGLE STEP 1 !
The Single-Step key on 4 keyboard allows you to execute one instruction at a time, and

to observe the results following each instruction. Generally, a single-step facility is built
with a hard-wired logic circuit. As you push the Single-Step key, you will be able to ob-
serve addresses and codes as they are executed. With the single-step technique you will
be able to spot ' '

Scanned with CamScanner

O incorrect addresses
O incorrect jump locations for loops

O incorrect data or missing codes

To use this technique effectively, you will have to reduce loop anq d‘elay counts ']
a minimum number. For example, in a program that transfers 100 bytes, it is meaningle,
to set the count to 100 and single-step the program 100 times. By reducing the coupt to
two bytes, you will be able to observe the execution of the loop. (If you reduce the coyp,
to one byte, you may not be able to observe the execution of the loop.) By single.
stepping the program, you will be able to infer the flag status by observing the eXecutiop
of Jump instructions. The single-step technique is very useful for short programs.

REGISTER EXAMINE

The Register Examine key allows you to examine the contents of the microprocessor Teg-
ister. When appropriate keys are pressed, the monitor program can display the contents of
the registers. This technique is used in conjunction either with the single-step or the

breakpoint facilities discussed below.
After executing a block of instructions, you can examine the register contents at 5

critical juncture of the program and compare these contents with the expected outcoma:

BREAKPOINT
In a single-board computer, the breakpoint facility is, generally, a software routine thar 21

lows you to execute a program in sections. The breakpoint can be set in your program by
using RST instructions. (See “Interrupts,” Chapter 12.) When you push the Execute is;s:"
your program will be executed until the breakpoint, where the monitor takes over agzi-
The registers can be examined for expected results. If the segment of the proczra;r:
found satisfactory, a second breakpoint can be set at a subsequent memory address 1o
bug the next segment of the program. With the breakpoint facility you can isolate the -
ment.of the program with errors. Then that segment of the program can be debug oec; ;i
lt:he smgle-step facility: The breakpoint technique can be used to check out ttclz tm
oop, I/O section, and interrupts. (See Chapter 12 for how to write a breakpoint routinc.

1.62 Common Sources of Errors

Scanned with CamScanner

